High incidence of spontaneous and chemically induced liver tumors in mice deficient for connexin32
نویسندگان
چکیده
Connexins are subunits of gap junction channels, which mediate the direct transfer of ions, second messenger molecules and other metabolites between contacting cells. Gap junctions are thought to be involved in tissue homeostasis, embryonic development and the control of cell proliferation [1,2]. It has also been suggested that the loss of intercellular communication via gap junctions may contribute to multistage carcinogenesis [3-5]. We have previously shown that transgenic mice that lack connexin32 (Cx32), the major gap junction protein expressed in hepatocytes, express lower levels of a second hepatic gap junction protein, Cx26, suggesting that Cx32 has a stabilizing effect on Cx26 [6]. Here, we report that male and female one-year-old mice deficient for Cx32 had 25-fold more and 8-fold more spontaneous liver tumors than wild-type mice, respectively. Incorporation of bromodeoxyuridine (BrdU) into the liver was higher for Cx32-deficient mice than for wild-type mice, suggesting that their hepatocyte proliferation rate was higher. Furthermore, intraperitoneal injection, two weeks after birth, of the carcinogen diethylnitrosamine (DEN) led, after one year, both to more liver tumors in Cx32-deficient mice than in controls, and to accelerated tumor growth. Loss of Cx32 protein from hepatic gap junctions is therefore likely to cause enhanced clonal survival and expansion of mutated ('initiated') cells, which results in a higher susceptibility to hepatic tumors. Our results demonstrate that functional gap junctions inhibit the development of spontaneous and chemically induced tumors in mouse liver.
منابع مشابه
Mice deficient for the gap junction protein Connexin32 exhibit increased radiation-induced tumorigenesis associated with elevated mitogen-activated protein kinase (p44/Erk1, p42/Erk2) activation.
Loss of connexin expression/gap junction intercellular communication (GJIC) has been correlated with decreased growth control and increased tumorigenesis. Studies utilizing Connexin32 (Cx32)-deficient knockout mice have demonstrated that loss of Cx32 increases susceptibility to chemically induced liver tumorigenesis. Here, in addition to dramatically increased liver tumorigenesis, we show that ...
متن کاملEnhanced spontaneous and aflatoxin-induced liver tumorigenesis in xeroderma pigmentosum group A gene-deficient mice.
Xeroderma pigmentosum (XP) is an autosomal recessive hereditary disease featuring defective nucleotide excision repair (NER). XP patients are highly sensitive to sunlight and develop skin cancer at an early age. While the fact that XP patients have a large increase in mortality from skin cancers has been extensively documented, the relation between XP and internal tumors has received little att...
متن کاملhe Effects of Rosmarinic Acid on the Liver Fibrosis Induced by Non-alco-holic Steatohepatitis in Male Mice
Background and Objectives: Non-Alcoholic Steatohepatitis (NASH) is a serious and increasing liver dis-ease, which develops into cirrhosis, fibrosis, and hepatocellular carcinoma. Rosmarinic Acid (RA) is a powerful antioxidant and anti-inflammatory compound. Therefore, this study aimed to assess the role of RA on a mouse model of NASH-induced liver fibrosis. Methods: In this research, C57/BL6 mi...
متن کاملHeme enzyme patterns in genetically and chemically induced mouse liver tumors.
Chemically induced rat hepatocyte nodules and hepatomas have repeatedly been shown to be deficient in Phase I drug-metabolizing enzymes. Some of these reduced activities are attributable to a diminution of the heme-containing terminal electron acceptor, cytochrome P-450. We recently demonstrated that spontaneous mouse liver tumors exhibit the same deficiency. Therefore, chemically induced and s...
متن کاملGenetic alterations in cancer knowledge system: analysis of gene mutations in mouse and human liver and lung tumors.
Mutational incidence and spectra for genes examined in both human and mouse lung and liver tumors were analyzed using the National Institute of Environmental Health Sciences (NIEHS) Genetic Alterations in Cancer (GAC) knowledge system. GAC is a publicly available, web-based system for evaluating data obtained from peer-reviewed studies of genetic changes in tumors associated with exposure to ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 7 شماره
صفحات -
تاریخ انتشار 1997